Possible involvement of the drug transporters P glycoprotein and multidrug resistance-associated protein Mrp2 in disposition of azithromycin.
نویسندگان
چکیده
P glycoprotein and multidrug resistance-associated protein 2 (Mrp2), ATP-dependent membrane transporters, exist in a variety of normal tissues and play important roles in the disposition of various drugs. The present study seeks to clarify the contribution of P glycoprotein and/or Mrp2 to the disposition of azithromycin in rats. The disappearance of azithromycin from plasma after intravenous administration was significantly delayed in rats treated with intravenous injection of cyclosporine, a P-glycoprotein inhibitor, but was normal in rats pretreated with intraperitoneal injection erythromycin, a CYP3A4 inhibitor. When rats received an infusion of azithromycin, cyclosporine and probenecid, a validated Mrp2 inhibitor, significantly decreased the steady-state biliary clearance of azithromycin to 5 and 40% of the corresponding control values, respectively. However, both inhibitors did not alter the renal clearance of azithromycin, suggesting the lack of renal tubular secretion of azithromycin. Tissue distribution experiments showed that azithromycin is distributed largely into the liver, kidney, and lung, whereas both inhibitors did not alter the tissue-to-plasma concentration ratio of azithromycin. Significant reduction in the biliary excretion of azithromycin was observed in Eisai hyperbilirubinemic rats, which have a hereditary deficiency in Mrp2. An in situ closed-loop experiment showed that azithromycin was excreted from the blood into the gut lumen, and the intestinal clearance of azithromycin was significantly decreased by the presence of cyclosporine in the loop. These results suggest that azithromycin is a substrate for both P glycoprotein and Mrp2 and that the biliary and intestinal excretion of azithromycin is mediated via these two drug transporters.
منابع مشابه
Expression of Drug Pump Protein MRP2 in Lipopolysaccharide-Treated Rats and Its Impact on the Disposition of Acetaminophen
The drug pump protein MRP2 is a membrane drug efflux transporter widely distributed in normal and tumor tissues. Its role is thought to be crucial for the disposition of many drugs and their substrates in different tissues. In this study, we aimed to examine the effects of systematic inflammation induced by lipopolysaccharide (LPS) on the expression and function of this transporter in rats. Jug...
متن کاملExpression of Drug Pump Protein MRP2 in Lipopolysaccharide-Treated Rats and Its Impact on the Disposition of Acetaminophen
The drug pump protein MRP2 is a membrane drug efflux transporter widely distributed in normal and tumor tissues. Its role is thought to be crucial for the disposition of many drugs and their substrates in different tissues. In this study, we aimed to examine the effects of systematic inflammation induced by lipopolysaccharide (LPS) on the expression and function of this transporter in rats. Jug...
متن کاملInvestigation of the involvement of P-glycoprotein and multidrug resistance-associated protein 2 in the efflux of ximelagatran and its metabolites by using short hairpin RNA knockdown in Caco-2 cells.
Liver and bile secretion can be an important first-pass and clearance route for drug compounds and also the site of several drug-drug interactions. In the clinical program for ximelagatran development, an unexpected effect of erythromycin on the pharmacokinetics of the direct thrombin inhibitor ximelagatran and its metabolites was detected. This interaction was believed to be mediated by inhibi...
متن کاملEffects of Salinispora derived metabolites against multidrug resistance, an in-silico study
Background: Multidrug resistance (MDR) is known to defeat most chemotherapies as one of the main anticancer strategies. The role of overexpression/overactivation of ABC transporters, especially P-glycoprotein (P-gp), in the development of chemotherapy has long been demonstrated. Salinispora is a marine actinomycete genus known for the production of novel bioactive metabolites. Methods: In this...
متن کاملInteraction of progestins with the human multidrug resistance-associated protein 2 (MRP2).
Progestins are widely used as oral contraceptives and hormone replacement therapy. Recently it has been demonstrated that many progestins are inhibitors of P-glycoprotein, possibly explaining gender differences in drug actions. In vitro evidence suggested that at least norgestimate might also inhibit other transporters like the multidrug resistance-associated protein 2 (MRP2). We therefore inve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 48 3 شماره
صفحات -
تاریخ انتشار 2004